
Summer Review Packet for AP CALCULUS     Name_____________________________________ 
Directions:  Complete the following problems.  All work must be shown to receive full credit. 
 
Simplify by factoring 
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Exponential and Logarithm Practice 
 

Solve each equation.  Use laws of logarithms.    

1. log 5𝑥 = log(2𝑥 + 9)    3.  102𝑥 = 46 

 

 

 

 

 

 

4. 3𝑒5𝑥 = 18     5.  log(𝑥 + 21) + log 𝑥 = 2 

 

 

 

 

 

6. −6 log3(𝑥 − 3) = −24 

 

 



Graphs, Transformations and Domain 

1. Match the name & equation to the graph. 

 

 
 

 

     
2. Match the description of the transformation with the equation. 

 Description Function 
 

_______ 

1. Shift to the left 1 unit a. 𝑦 = 𝑓(−𝑥) 

 

 
_______ 

2. Shift to the right 1 unit b.  𝑦 =  2𝑓(𝑥) 

 

 

_______ 

3. Shift up 1 unit c. 𝑦 =  𝑓 (𝑥 + 1) 

 

 

_______ 

4. Shift down 1 unit d. 𝑦 =
1

2
𝑓(𝑥) 

 

 
_______ 

5. Makes the graph wider e. 𝑦 = 𝑓(𝑥) + 1 

 

 
_______ 

6. Makes the graph more narrow f. 𝑦 =  𝑓(𝑥 − 1) 
 

 

_______ 

7. Reflect over the x-axis g. 𝑦 = 𝑓(𝑥) − 1 

 

 

_______ 

8. Reflect over the y-axis h. 𝑦 = −𝑓(𝑥) 
 

 

 



3. Find the domain of each function. 

a. 𝑓(𝑥) = ln 𝑥 b. 𝑓(𝑥) = √9 − 2𝑥   
 

 

 

 

 

 

 

 

 

c. 𝑔(𝑥) =
𝑥

 𝑥2−16 
 d. ℎ(𝑥) =
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Limits:   
Find each of the following limits analytically: 

1. lim
𝑥→ 5

 2𝑥2−5𝑥−25 
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 2. lim

𝑥→ 16
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3. lim
𝑥 → 0
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5. Discuss the continuity of (𝑥) = {
6 + 3𝑥     𝑥 < −2
𝑥2 − 4     𝑥 ≥ −2

 .  (Use the definition of continuity) 

 
 
 
 
 
 
 
 

6. Given the function f defined by 𝑓(𝑥) =  −
𝑥−1

𝑥2 + 2𝑥 − 3
      

a. For what values of x is f(x) discontinuous.  Classify the discontinuity as removable, infinite, or jump. 

 

 

 

b. At each point of discontinuity found in part (a) determine whether f(x) has a limit and, if so, give the 

value of the limit. 

 

 
 
 
 
 
 
Derivative Practice 
Find the first derivative for each of the following. 

1.   3 2sin 5y x       2.  𝑦 = (𝑥2 + 3)(𝑥3 + 4)           
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5.     
2 432 1 5  y x x      6.  𝑓(𝑥) = −2 cos 𝑥 + tan2 𝑥  
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Tangent Lines 

1. Write an equation of the line tangent to the graph of cos(2 )y x  at 
4

x


 . 

 
 
 
 
 

2. Find )(4f and )(' 4f if the tangent line to the graph of )(xf at 4x has equation 143  xy . 

 

 
 
 
 
 

Calculate the second derivative. 
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Find all critical points of the function. 
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Find the absolute extrema of the function on the given interval. 
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Verify Rolle’s Theorem for the given interval 
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Find a point c satisfying the conclusion of the Mean Value Theorem for the given function and interval. 

1.   94,,xy   

 
 
 
 
 
 
 
 



Find the intervals of increase and decrease and relative extrema for the given function. 
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Determine the intervals on which the function is concave up or down and find the points of inflection. 

1.  xxy cos2  0 ≤ 𝑥 ≤ 2𝜋    2.  
45

54 xxy   

 
 
 
 
 
 
 
 
Related Rates: 

1. Water pours into a conical tank of height 10ft and diameter of 8ft at a rate of min3
10 ft .  How fast 

is the water level rising when it is 5 ft high? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graphing and Derivatives 

1. Each graph in Figure 2 shows the graph of a 
function ( )f x  and its derivative '( )f x .  

Determine which is the function and which 
is the derivative. 

 
 
 
 
 



2. The figure shows the graph of the derivative, '( )f x on [0, ∞] .   

a. Locate the points of inflection of ( )f x  and the points where the relative maxima and minima 

occur.   
 
 
 
 
 
 

b. Determine the intervals on which ( )f x  has the 

following properties: 
i. Increasing   

ii. Decreasing 
iii. Concave up 
iv. Concave Down 

 
 
 
 
 
 
 
 
 
 
 
 

3. Match the description of ( )f x with the graph of its derivative '( )f x in figure 1. 

a. ( )f x is increasing and concave up. 

b. ( )f x is decreasing and concave up. 

c. ( )f x is increasing and concave down. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. An open rectangular box with square base is to be made from 48 ft.2 of material. What dimensions will result in 

a box with the largest possible volume? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. A gardener wants to make a rectangular enclosure using a wall as one side and 120 m of fencing for the other 

three sides.  Find the dimensions of the garden so the gardener maximizes the area. 

 

 


